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a b s t r a c t

The modern portfolio theory has been trying to determine how an investor might allocate assets among
the possible investments options. Since the seminal contribution provided by Harry Markowitz’s theory
of portfolio selection, several other tools and procedures have been proposed to deal with return-risk
trade-off. Furthermore, diversification across sources of returns and risks based on entropy indexes is
another pivotal aspect in portfolio management. An efficient approach to model these portfolio
properties with the proportion of each asset can be obtained according to mixture design of
experiments. Desirability method can be applied to optimize this nonlinear multiobjective problem.
Nevertheless, a tuning procedure is required, since preference articulation parameters in desirability
algorithm are unknown a priori. As a result, a computer-aided desirability tuning method is proposed to
find an optimal portfolio with time series of returns and risks modeled by ARMA–GARCH models. To
assess the proposal feasibility, the method is tested with a heteroskedastic dataset formed by weekly
world crude oil spot prices and returns. Computer-aided desirability tuning was able to enhance the
global desirability by 79% in relation to the result with no tuning procedure.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The allocation of different assets in a profitable portfolio is one
of the major interesting issues in energy market management. The
risks associated to this sector are mainly linked with the high
volatility of fossil fuels, electricity and CO2 emission prices, which
evolve over time and are difficult to predict [1]. To quantify this
time-varying variance, GARCH (generalized autoregressive condi-
tional heteroskedasticity) is the time series technique applied to
model the serial dependence of volatility [2]. During the period of
extreme oil price volatility in India, July 2nd, 2007–November
28th, 2008, Ghosh [3] employed GARCH and EGARCH models to
investigate the impact of oil price shocks on nominal exchange
rate. Charles and Darné [4] assessed how shocks (outliers) affect
volatility over time by using a new semi-parametric test based on
conditional heteroskedastic models. It was concluded that outliers
associated with particular event patterns can bias the regularity
and non-negativity conditions of GARCH-type models, the detec-
tion of structural breaks in volatility, and the parameters’ esti-
mates of the equation governing volatility dynamics. Treating
weekly crude oil spot price in eleven international markets over

the 1997-2009 period, Mohammadi and Su [5] highlighted the
goodness-of-fit of MA(1)–GARCH (1,1) for modeling and forecast-
ing the conditional mean and volatility. Hou and Suardi [6] used a
nonparametric GARCH model to capture the return volatility for
crude oil market. Chang et al. [7] discussed the use of GARCH (1,1)
to estimate the variance (volatility) one-day-ahead forecasting for
a portfolio consisting of crude oil, corn and soybeans. The authors
calculated the weight of each component in the portfolio, assum-
ing some constraints related to the minimal values of each
component that are related to the production capacity.

As an optimal criterion to choose assets, Mean-Variance Port-
folio (MVP) optimization of Markowitz [8,9], considers the mini-
mization of the portfolio variance and maximization of the
expected return [10,11]. A pivotal issue observed in MVP literature
is related to forecasted values in a portfolio composition using
ARMA (autoregressive moving average) models to estimate the
returns [6,5] and GARCH (1,1) models to predict the variance or
portfolio volatility [12–17] or, in more comprehensive cases, using
both ARMA–GARCH or its variations [18]. Hlouskova et al. [19]
employed an ARMA–GARCH prediction for quarterly and monthly
values resulting in a rebalanced portfolio that outperforms the
traditional ones. The authors also present some concerns about
prediction or forecasting errors. Moreover, other prediction algo-
rithms as neural networks are combined to an optimization MVP
routine.
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The problem of Markowitz’s mean-variance model is due to
portfolios highly concentrated on a limited number of assets,
which deviates from the original purpose of diversification [20].
As entropy is a well-known measure of diversity, many scholars
apply it to the portfolio selection theory [21]. Philippatos and
Wilson [22] have affirmed that the mean-entropy portfolios were
consistent with the Markowitz full-covariance and the Sharpe
single-index models. Yu et al. [23] evaluated the performance of
the portfolio selections incorporating different entropy measures
by applying multiple criteria method, improving the feasibility of
models considering the impact of short-sale constraints and
transaction costs on portfolios.

The current availability of optimization packages customized
for portfolio management has been encouraging investor to apply
mean-variance optimization in their portfolio construction process
[20]. Oliveira et al. [24] have used mixture design of experiments
(MDE) to model asset proportions in relation to portfolio’s risk and
return. As an alternative of using traditional linear programming,
the authors have combined multi-response and nonlinear objec-
tive functions into a desirability algorithm for portfolio’s optimiza-
tion. In such cases, a suitable compromise solution may be
obtained by incorporating decision maker’s preference into the
problem. Jeong and Kim [25] proposed an interactive desirability
function approach (IDFA) to facilitate the preference articulation
process allowing the decision maker to adjust the desirability
function parameters (shape, bound and target) in a well-
structured framework. Although the authors have argued that
their interactive method was highly effective in generating com-
promised solutions, it is widely known that experimental designs
are notably better approaches for building causal relationships.

Taking into consideration the aforementioned literature, a suitable
approach to help practitioners and investors, in energy market, to
obtain a profitable portfolio should: (a) include a convex multi-
objective problem; (b) use a well-fitted risk and return models for
an one-step-ahead predicted values; (c) embody a time series techni-
que capable of detecting volatility, co-movements and time-varying
conditional correlation; (d) promote the portfolio diversification and
(e), allow the investor to encompass some risk aversion metric. These
requirements can be achieved representing the expected portfolio risk,
return and entropy by their respective response surfaces obtained
through Mixture Design of Experiments [24]. In order to solve this
multiobjective portfolio problem, the desirability algorithm can be
implemented by using optimal parameters, according to an effective

tuning procedure. Therefore, this paper aims to propose an optimal
desirability algorithm capable of finding a suitable portfolio for a given
amount of assets, considering their respective conditional risk, return
and diversity.

The remainder of this paper is structured as follows. Section 2
presents an overview of statistical and optimization techniques
applied to portfolio selection when the dataset is well fitted by
ARMA–GARCH models. Section 3 details the proposed method to
determine an optimal portfolio considering not only MDE and RSM
(response surface methodology) designs, but also desirability
functions. Section 4 shows the application of this method on
crude oil sector. Finally, Section 5 presents the main findings of
this paper.

2. Portfolio optimization

2.1. Markowitz mean-variance model

The major breakthrough in portfolio optimization was provided
by Harry Markowitz and his modern theory of portfolio selection
[8]. The author suggested that investor should allocate funds
among investments based on the risk-return trade-off. This finan-
cial decision-making process can be formulated as a mean-
variance optimization problem, in which the expected return must
be maximized with variance as small as possible [20]. As sug-
gested by Anagnostopoulos and Mamanis [26], Markowitz mean-
variance approach can be written as the following multiobjective
optimization problem:

Min ρ xð Þ ¼
Xn
i ¼ 1

Xn
j ¼ 1

xixjσij ð1Þ

Max μ xð Þ ¼
Xn
i ¼ 1

xiμi ð2Þ

s:t: :
Xn
i ¼ 1

xi ¼ 1 ð3Þ

Xn
i ¼ 1

δirK; ð4Þ

liδirxiruiδi i¼ 1;2;…;n ð5Þ

δiA 0;1f g i¼ 1;2;…;n ð6Þ

where n is the number of assets included in the portfolio, xi is the
proportion of each asset i, μ xð Þ is the expected return, σij is the
covariance between the returns of assets i and j; ρ xð Þ is the
portfolio risk, δi is a binary variable which assumes the values
0 or 1 if the asset is chosen or not; K is the number of assets (or
series) available; li and ui are respectively the lower and upper
bounds for the proportion of each asset i.

2.2. Heteroskedastic time series modeling

Some authors [5,18,19] highlighted that GARCH models out-
performs the traditional techniques such as moving average,
exponential smoothing and linear regression in the modeling
and forecasting task of conditional time series. Hence, assuming
that the series of returns of each component q is heteroskedastic,
its value can be modeled and forecasted by a GARCH model.
According to Pham and Yang [27], the ARMA(r, m)–GARCH (p, q)

1. Choose 
heteroskedastic assets

2. Forecast μ and σ2

by ARMA-GARCH 
model

3. Create a MDE for 
selected assets

4. Create a RSM for 
Risk, Return and 

Entropy’s ωi and λi

6. Run DRSM to find 
the best ωi and λi for 

portfolio optimization

5. Run DMDE based on 
RSM’s ωi and λi

registering responses 
on RSM arrange

7. In MDE, run the 
final desirability 

(DMDE) to find the 
optimal portfolio

YIs there 
any ωi and λi 

missing?

N

Fig. 1. Computer-aided desirability tuning method.
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model can be estimated for a univariate process as:

σ2t ¼ ωiþ
Xp
j ¼ 1

βiσ
2
t� jþ

Xq
i ¼ 1

αiε
2
t� j ð7Þ

yt ¼ cþ
Xr
i ¼ 1

φiyt� iþ
Xm
j ¼ 1

θiεt� jþεtεt �N 0; σ2t
� � ð8Þ

εt ¼ σtzt ; zt �N 0;1ð Þ ð9Þ

For a given instant t, the returns of i assets modeled as ARMA
(1, 1) and their respective conditional variances (or risks) as a
GARCH (1, 1) can be written as such:

σ2i;t ¼ hit ¼ωiþα1ε
2
t�1þβ1σ

2
t�1 ð10Þ

yi;t ¼ cþφ1yi;t�1þθ1εi;t�1þεi;t ð11Þ

where hit is the conditional variance of volatility of εi for the asset i
at time t, the coefficientsω, α and β are related to the innovations
ε2t� j.

Taking the covariance term of two risk assets i and j σij
� �

written in terms of a conditional covariance when the asset
returns are heteroskedastics, it may be assumed that
σij ¼ ρij

ffiffiffiffiffiffiffiffiffiffi
hiihjj

q
, where hii is the variance of asset i and hjj is the

variance of asset j; ρij is the conditional correlation. Then, since the
portfolio may be formed by one-step-ahead forecasting values, the
portfolio risk can be established using Constant (CCC) or Dynamic
Conditional Correlation (DCC) concepts [13,16,28,29].

The constant conditional variance–covariance matrix can be
written as:

Ht ¼

σ211;t σ212;t ⋯ σ21n;t

σ212;t σ222;t ⋯ σ22n;t
⋮ ⋮ ⋱ ⋮

σ21n;t σ22n;t ⋯ σ2nn;t

2
66664

3
77775 ð12Þ

σ2i;t ¼ hit ¼ωiþ
Xp
i ¼ 1

αiε
2
t� iþ

Xq
j ¼ 1

βjσ
2
t� j

σij;t ¼ ρijσi;tσj;t i; j¼ 1;…;n; ia j ð13Þ

Ht ¼DtRDt ð14Þ
According to Asai and McAleer [30] CCC and DCC structures can

be both used for purposes of determining optimal portfolio and
risk management strategies. The conditional volatilities from
multivariate MGARCH models can be used to construct optimal
portfolio weights [31] and their values influence greatly the
optimal weights. Kroner and Ng [31], established that the optimal
weights of a portfolio formed with heteroskedastic assets can be
obtained as:

xij;t ¼
hjj;t�hij;t

hii;t�2hij;tþhjj;t
ð15Þ

It can be shown that Eq. (15) is obtained with the minimization

of
Pk
i ¼ 1

x2i hiiþ2
Pn
io j

P
xixjhij

 !
for only two assets and with weights

equals to xi and xj¼(1�xi). Since the variance of the series is
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Fig. 2. Dubai Fateh time series.

Table 1
Summary statistics for returns of crude oil markets.

Variable Dubai China Indonesia Venezuela

Mean 0.00279 0.00277 0.00284 0.00269
StDev 0.04148 0.04290 0.04364 0.04852
Minimum �0.16816 �0.24888 �0.25799 �0.21996
Maximum 0.24007 0.15194 0.20978 0.19694
Skewness �0.24650 �0.66846 �0.51186 �0.48673
Kurtosis 2.79400 2.94339 3.13425 1.78357

Table 2
Summary statistics of returns up to 20 lags.

Variable Dubai China Indonesia Venezuela

Ljung–Box 14.1402 18.6552 16.2289 13.3007
Engle’s ARCH 15.0486 17.8899 16.3519 14.7706

Table 3
Parameter ARMA–GARCH for markets.

Parameters Dubai China Indonesia Venezuela

C 0.006165 0.004589 0.005042 0.005692
AR(1) �0.462880 �0.113180 �0.150610 �0.458030
MA(1) 0.683240 0.434770 0.418500 0.645900
K 5.5192e�05 1.2999e�05 1.4414e�05 9.5695e�05
GARCH(1) 0.886030 0.812940 0.812030 0.902760
ARCH(1) 0.078568 0.106320 0.102760 0.053396

Table 4
One-step-ahead returns forecasting using ARMA–GARCH models.

Parameters Dubai China Indonesia Venezuela

σ̂2t 0.0360 0.0346 0.0365 0.0432

ŷi;t 0.0033 0.0094 0.0084 0.0167
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conditional (heteroskedastic assets), the correlation is also condi-
tional. Then, standardized conditional residuals can be obtained
by:

uit ¼
εitffiffiffiffiffiffiffi
hiit

p� � ð16Þ

the CCC between assets i and j at a time t�1 can be written
according to Higgs [16] and Bauwens et al. [13] and can be
determined as:

Ψ ij;t�1 ¼

PM
m ¼ 1

ui;t�muj;t�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m ¼ 1

u2
i;t�m

� �
� PM

m ¼ 1
u2
j;t�m

� �s ð17Þ

Some modifications in the traditional MVP should be intro-
duced taking into consideration the general aspects of ARMA–
GARCH models. Therefore, the original multiobjective portfolio
optimization in Eqs. (1) and (2) can be updated to the hetero-
skedastic portfolio as such:

Min σ2P�GARCH ¼
Xk
i ¼ 1

x2i hiiþ2
Xn
io j

X
xixjΨ ij;t�1hihj

0
@

1
A ð18Þ

Max E xð Þ ¼
Xn
i ¼ 1

xiyt ¼
Xn
i ¼ 1

xi μþ
ffiffiffiffiffi
hii

p
εt

� �
ð19Þ

s:t: :
Xn
i ¼ 1

xi ¼ 1 ð20Þ

The constraints defined by Eqs. (4)–(6) remain the same.

2.3. Entropy

Originally, entropy was utilized in thermodynamics, however,
its advantages in measuring risk and describing distributions have
been extensively taken into account in finance theory [21]. In the
field of portfolio selection, entropy was initially applied to mea-
sure portfolio’s risk by replacing the variance in mean-variance
models [22]. On the other hand, some authors argued that one of
the shortfalls of Markowitz’s MVP is the generation of portfolios
highly concentrated on few assets with poor out-of-sample
performance [21,32–35]. To deal with the diversification problem,
the maximization of Shannon’s Entropy index can be employed to
improve the portfolio’s diversity [32,33]. The Shannon’s Entropy
index, also called as Shannon–Wiener Index, is one of several
diversity indices used to measure diversity in categorical data. It is
simply the information entropy of the distribution, treating
species as symbols and their relative population sizes as the
probability [36]. According to Grubb et al. [37] the Shannon–
Weiner index was considered satisfactory due to incorporate the
concepts of variety and balance. The principle of Maximum
Entropy determines the least-informative probability distribution
for a random variable X given some prior information about X. For
example, if the mean and variance of X are available, the contin-
uous probability distribution that maximizes the Shannon differ-
ential entropy is the normal distribution. According to Krokhnal
et al. [38], Shannon differential entropy can be written as:

S xð Þ ¼ �
Z 1

�1
f X tð Þlog f X tð Þdt ð21Þ

Since portfolio’s weights are proportions, fX(t) follows a discrete
probability distribution and the Maximum Entropy in Eq. (21)
becomes [39]:

S xð Þ ¼ �
Xnþ1

i ¼ 1

f X tð Þlog f X tð Þ ¼ �
Xnþ1

i ¼ 1

xi log xið Þ ð22Þ

where xi are the weights (or proportions) chosen for each asset i.
The form of Eq. (22) is known as the Shannon–Weiner Index
[37,39,40]. Several researchers used the Shannon’s entropy index

Table 5
MDE for modeling risk, return and entropy based on asset proportions.

Mixture proportions Portfolio properties

# Dubai China Indonesia Venezuela Risk Return Entropy

1 0.8500 0.0500 0.0500 0.0500 0.03182 �0.00315 0.58750
2 0.0500 0.8500 0.0500 0.0500 0.03441 �0.00139 0.58750
3 0.0500 0.0500 0.8500 0.0500 0.03546 �0.00035 0.58750
4 0.0500 0.0500 0.0500 0.8500 0.03568 �0.00371 0.58750
5 0.4500 0.4500 0.0500 0.0500 0.03122 �0.00227 1.01823
6 0.4500 0.0500 0.4500 0.0500 0.03156 �0.00175 1.01823
7 0.4500 0.0500 0.0500 0.4500 0.03276 �0.00343 1.01823
8 0.0500 0.4500 0.4500 0.0500 0.03467 �0.00087 1.01823
9 0.0500 0.4500 0.0500 0.4500 0.03297 �0.00255 1.01823

10 0.0500 0.0500 0.4500 0.4500 0.03343 �0.00203 1.01823
11 0.3167 0.3167 0.3167 0.0500 0.03201 �0.00163 1.24220
12 0.3167 0.3167 0.0500 0.3167 0.03176 �0.00275 1.24220
13 0.3167 0.0500 0.3167 0.3167 0.03200 �0.00240 1.24220
14 0.0500 0.3167 0.3167 0.3167 0.03319 �0.00182 1.24220
15 0.2500 0.2500 0.2500 0.2500 0.03198 �0.00215 1.38629
16 0.5500 0.1500 0.1500 0.1500 0.03125 �0.00265 1.18251
17 0.1500 0.5500 0.1500 0.1500 0.03273 �0.00177 1.18251
18 0.1500 0.1500 0.5500 0.1500 0.03319 �0.00125 1.18251
19 0.1500 0.1500 0.1500 0.5500 0.03312 �0.00293 1.18251
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Fig. 3. Dubai Fateh autocorrelation functions.
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in the portfolio optimization task mainly considering the multi-
objective approach [32–34].

2.4. Mixture design of experiment

Classical mixture designs are special kind of response surfaces
in which the factors involved in the experimentation are propor-
tions of components in a mixture and for which the sum must be
constrained to a certain value. As a main advantage, the poly-
nomial is a convex function [41]. When compared to MVP
approach, it is straightforward that the mean-variance equations
may be written as a mixture response surface, where the amounts
of capital investment in q assets are defined by the type of mixture
design, such as an extreme vertices, simplex lattice, or simplex
centroid [24,41]. Suppose that the weights or amounts xi of the
MVP model could be considered proportions of a mixture whose
sum of weights is unitary or constrained to a specific bound ξ.
Since the proportions are dependent, the constraints represented
by Eqs. (4)–(6) are no longer needed in a MDE approach in a
portfolio allocation task.

The heteroskedastic portfolio described in Eqs. (18)–(20) can be
modified by adding entropy function S(x) shown in Eq. (22). This
third objective function must be maximized and the original
multiobjective portfolio optimization scheme is now written as
follows:

Min σ2P�GARCH ¼
Xk
i ¼ 1

x2i hiiþ2
Xn
io j

X
xixjΨ ij;t�1hihj

0
@

1
A ð23Þ

Max E xð Þ ¼
Xn
i ¼ 1

xiyt ð24Þ

Max S xð Þ ¼ �
Xnþ1

i ¼ 1

xi log xið Þ ð25Þ

s:t: :
Xn
i ¼ 1

xi ¼ 1 ð26Þ

with:

σ2i;t ¼ hit ¼ ωiþα1ε
2
t�1þβ1σ

2
t�1 ð27Þ

yi;t ¼ cþφ1yi;t�1þθ1εi;t�1þεi;t ð28Þ

Considering the response surfaces established for σ2t ; E xð Þ and
S xð Þ, respectively as f 1ðσ2t Þ; f 2 E xð Þð Þ and f 3 S xð Þð Þ and also using a
mixture design of experiments, the new three objective functions
used in multiobjective MVP can be obtained as such:

f 1 σ2t
� �

; f 2 E xð Þð Þ; f 3 S xð Þð Þ	 

Portf olio ¼

Xq
i ¼ 1

βn

i xi

þ
XXq

io j

βn

ijxixjþ
X X

io jok

Xq
βn

ijkxixjxk ð29Þ

The coefficients βn

i show how each component contributes to
the response variable; βn

ij indicates what is the combined effect of
components i and j. Indeed, for the linear model βn

ij ¼ β0þβi and
for the quadratic model, it is possible to write: βn

i ¼ β0þβiþβii and
βn

ij ¼βij�βii�βjj. These coefficients are estimated using the Ordin-
ary Least Squares (OLS) algorithm.
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Table 6
Feasible solution before method implementation.

Objective functions Bounds Prediction

Function Goal Lower Target Upper ωi λi Value Desirability

Risk Minimize 0.03198 0.03198 0.03544 1 1 0.03328 0.6248
Return Maximize 0.00945 0.01634 0.01634 1 1 0.01169 0.3258
Entropy Maximize 0.58554 1.31100 1.31100 1 1 1.20194 0.8497

Global desirability: 0.5572

Table 7
RSM for modeling global desirability DMDE.

ω1 λ1 ω2 λ2 ω3 λ3 DMDE Risk Return Entropy p1 p2 p3 p4

0.10 1.0 5.05 1.0 5.05 5.5 0.99784 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025
10.00 1.0 5.05 1.0 5.05 5.5 0.87558 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
0.10 10.0 5.05 1.0 5.05 5.5 0.99023 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 10.0 5.05 1.0 5.05 5.5 0.94140 0.0321 �0.0016 1.273 0.3240 0.3255 0.3255 0.025
0.10 1.0 5.05 10.0 5.05 5.5 0.99902 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 1.0 5.05 10.0 5.05 5.5 0.90644 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025
0.10 10.0 5.05 10.0 5.05 5.5 0.99366 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 10.0 5.05 10.0 5.05 5.5 0.67653 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 1.0 0.10 5.5 0.10 5.5 0.99100 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 10.0 0.10 5.5 0.10 5.5 0.99485 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 1.0 10.00 5.5 0.10 5.5 0.94669 0.0324 �0.0012 10.093 0.3328 0.0427 0.5995 0.025
5.05 10.0 10.00 5.5 0.10 5.5 0.80278 0.0321 �0.0014 10.104 0.3763 0.025 0.5737 0.025
5.05 1.0 0.10 5.5 10.00 5.5 0.99100 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 10.0 0.10 5.5 10.00 5.5 0.99485 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 1.0 10.00 5.5 10.00 5.5 0.93407 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025
5.05 10.0 10.00 5.5 10.00 5.5 0.75352 0.0321 �0.0014 1.152 0.3573 0.0122 0.4954 0.025
5.05 5.5 0.10 1.0 5.05 1.0 0.99737 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 5.5 10.00 1.0 5.05 1.0 0.76867 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 5.5 0.10 10.0 5.05 1.0 0.98811 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 5.5 10.00 10.0 5.05 1.0 0.78351 0.0325 �0.0012 10.723 0.3167 0.0863 0.5720 0.025
5.05 5.5 0.10 1.0 5.05 10.0 0.99880 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 5.5 10.00 1.0 5.05 10.0 0.88729 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 5.5 0.10 10.0 5.05 10.0 0.99229 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 5.5 10.00 10.0 5.05 10.0 0.83817 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025
0.10 5.5 5.05 1.0 0.10 5.5 0.99030 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 5.5 5.05 1.0 0.10 5.5 0.92031 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
0.10 5.5 5.05 10.0 0.10 5.5 0.99576 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 5.5 5.05 10.0 0.10 5.5 0.81300 0.0321 �0.0014 10.104 0.3763 0.025 0.5737 0.025
0.10 5.5 5.05 1.0 10.00 5.5 0.99260 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 5.5 5.05 1.0 10.00 5.5 0.92031 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
0.10 5.5 5.05 10.0 10.00 5.5 0.99576 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 5.5 5.05 10.0 10.00 5.5 0.76016 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025
5.05 1.0 5.05 5.5 0.10 1.0 0.92255 0.324 �0.0012 0.9889 0.3292 0.025 0.6120 0.034
5.05 10.0 5.05 5.5 0.10 1.0 0.86402 0.0321 �0.0014 10.293 0.3806 0.0338 0.5606 0.025
5.05 1.0 5.05 5.5 10.00 1.0 0.89661 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025
5.05 10.0 5.05 5.5 10.00 1.0 0.71737 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
5.05 1.0 5.05 5.5 0.10 10.0 0.95582 0.0324 �0.0012 10.363 0.3266 0.0604 0.5881 0.025
5.05 10.0 5.05 5.5 0.10 10.0 0.90449 0.0321 �0.0014 10.427 0.3771 0.0426 0.5553 0.025
5.05 1.0 5.05 5.5 10.00 10.0 0.95161 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025
5.05 10.0 5.05 5.5 10.00 10.0 0.80660 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
0.10 5.5 0.10 5.5 5.05 1.0 0.99479 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025

10.00 5.5 0.10 5.5 5.05 1.0 0.99100 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
0.10 5.5 10.00 5.5 5.05 1.0 0.99260 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 5.5 10.00 5.5 5.05 1.0 0.62824 0.0321 �0.0014 10.265 0.3762 0.0338 0.5650 0.025
0.10 5.5 0.10 5.5 5.05 10.0 0.99702 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025

10.00 5.5 0.10 5.5 5.05 10.0 0.99485 0.0321 �0.0016 12.731 0.3240 0.3255 0.3255 0.025
0.10 5.5 10.00 5.5 5.05 10.0 0.99576 0.0326 �0.0012 1.153 0.2902 0.1569 0.5279 0.025

10.00 5.5 10.00 5.5 5.05 10.0 0.74195 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025
5.05 5.5 5.05 5.5 5.05 5.5 0.82544 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025
5.05 5.5 5.05 5.5 5.05 5.5 0.82544 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025
5.05 5.5 5.05 5.5 5.05 5.5 0.82544 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025
5.05 5.5 5.05 5.5 5.05 5.5 0.82544 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025
5.05 5.5 5.05 5.5 5.05 5.5 0.82544 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025
5.05 5.5 5.05 5.5 5.05 5.5 0.82544 0.0321 �0.0014 11.721 0.3543 0.1399 0.4808 0.025
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3. Computer-aided desirability tuning for portfolio
optimization

Dealing with a multiobjective optimization problem obtained
through an experimental design, Derringer and Suich [42]
improved the algorithm of desirability function of Harrington
[43] to incorporate a set of transformations based on the limits
imposed on the responses. Jeong and Kim [25], recognizing that
the desirability tuning is not a trivial task, proposed a method to
adjust the preference parameters of shape, bound and target,
relaxing or tightening their values interactively. Extending Jeong
and Kim’s [25] strategy to experimentation field, a DOE strategy
could be used to investigate the simultaneous changing in desir-
ability parameters. This strategy, called as “Computer-aided desir-
ability tuning”, can be viewed as a kind of posterior decision
maker’s preference articulation in which an experimental design
does not require all the feasible solutions of the posterior pre-
ference but only a few combinations. Departing from an initial
choice for bounds (Li and Hi) and targets (Ti), weight (ωi) and
importance (λi) parameters for each response can be simulta-
neously adjusted, according to a response surface design as Box–
Behnken. If the number of parameters becomes larger, a screening
strategy could be used such as Plackett–Burman, Taguchi, Frac-
tional factorial or D-optimal designs.

Based on ARMA–GARCH modeling, computer-aided desirability
tuning method consists of creating a mixture design for asset
proportions in order to build risk, return and entropy functions.
After that, the multiobjective portfolio problem can be optimized

by using a desirability formulation as such:

Maximize DMDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d f 1
� �� �λ1 � d f 2

� �� �λ2 � d f 3
� �� �λ33

q
s:t: : dnþ1 yi

� �
ZD; i¼ 1;2;…; k

DZ0

xAΩ ð30Þ
with:

d f 1 σ2p

� �h i
¼

0 f 1 σ2p

� �h i
i
4Ui

Ui � f 1 σ2pð Þ½ �i
Ui �Ti

h iω
Tir f 1 σ2p

� �h i
i
rUi

1 f 1 σ2p

� �h i
i
oTi

8>>>>><
>>>>>:

ð31Þ

d f 2 EðXÞð Þ� �¼
0 f 2 EðXÞð Þ� �

ioLi
f 2 EðXÞð Þ½ �i � Li

Ti � Li

h iω
Lir f 2 EðXÞð Þ� �

irTi

1 f 2 EðXÞð Þ� �
i4Ti

8>>><
>>>:

ð32Þ

d f 3 SðXÞð Þ� �¼
0 f 3 SðXÞð Þ� �

ioLi
f 3 SðXÞð Þ½ �i � Li

Ti � Li

h iω
Lir f 3 SðXÞð Þ� �

irTi

1 f 3 SðXÞð Þ� �
i4Ti

8>>><
>>>:

ð33Þ

where dnþ1(yi) is the desirability function of the yi on (nþ1)th
run; Ω denotes the lower and upper bounds chosen for the
proportions of each contract; Li is the desirability lower bound;

Fig. 5. Contour plots of global desirability DMDE: interactions among the optimization parameters ω and λ.
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Ti is the desirability target; Hi is the upper bound and; ω and λ are
the desirability weight and importance coefficients (risk aversion).
In this decision-making scenario, upper or lower bounds assumed
the mean value of the responses from each asset and the target
was obtained by the individual optimization Min

xAΩ
f i xð Þ.

Obviously, each different value of λi and ωi will conduct to
different values of risk and return, depending on the risk aversion
of each investor. A response surface design can be used to assess
the values of weights and importance coefficients that maximize
the desirability function DMDE. Thus, DMDE can be adjusted by a
second-order response surface model for ωi and λi, such as:

DMDE ω; λð Þ ¼ β0þ
Xk
i ¼ 1

βixiþ
Xk
i ¼ 1

βiix
2
i þ

XX
io j

βijxixjþε ð34Þ

where xi are the desirability weights (ω) and the importance
coefficients (λ) assigned to risk, return and entropy. Hence,
Eqs. (35) and (36) determine how to obtain the optimal para-
meters (λi and ωi) for being set at the multiobjective portfolio
problem (DMDE) in Eqs. (30)–(33).

Maximize DRSM ¼ DMDE ω;λð Þ�L
T� L

h iϖ
s:t: : ω; λAΞ ð35Þ

where:

DRSM ¼
0 DMDE ω; λð ÞoL

DMDE ω;λð Þ�L
T� L

h iϖ
LrDMDE ω; λð ÞrT

1 DMDE ω; λð Þ4T

8>><
>>: ð36Þ

where DRSM is the desirability function based on Box–Behnken
design; Ξ denotes the experimental region constraint; L is the
desirability lower bound; T is the desirability target obtained by
Min
ω;λAΞ

DMDE ω; λð Þ and; ϖ is the desirability weight applied to DRSM

optimization.
Finally, optimal weights and importance coefficients from

Eq. (35) must be applied to Eqs. (30)–(33) in order to estimate
the optimal portfolio. Computer-aided desirability tuning method
is schematically summarized in Fig. 1. Next section presents a case
study with ARMA–GARCH weekly world crude oil spot prices and
returns to numerically illustrate the proposed method.

4. Illustrative example

4.1. Choose heteroskedastic assets

To attend the goals of this paper, the assets that will be
comprised as components of the mixture design experiment
(MDE) were chosen from weekly data of world crude oil (FOB)
spot prices (dollars per barrel) covering January 2nd, 1998 to
October 15th, 2011 obtained from Energy Information Adminis-
tration—EIA1 totalizing 718 observations each. To analyze and treat
the time series for the portfolio, four assets were chosen for
comprise the portfolio using their prices in oil-exporting from
Organization of Petroleum Exporting Countries (OPEC) and non-
OPEC: Asia Dubai Fateh, China Daqing, Indonesia Minas and
Venezuela Tia Juana. Stationary requirements for the analysis were
obtained by log return (εt ¼ log pt=pt�1

� �
), where pt and pt�1 are

current and considered one-period lagged prices. Each of these
assets will be the mixture design components.

An important step in the proposed approach is the verification
of series’ behavior. Fig. 2 shows the portfolio’s time series for one
of the mixture components.

In this plot the characteristic of the series presents some
heteroskedasticity. This can be seen at the significance of the signs
on return series and also on the original’s time series volatility.
Similar findings are present on the other components of the
portfolio. Table 1 presents a descriptive return series summary
statistics. The negative values of skewness reveal high probability
of large decreases. In other way, a high value of the kurtosis
indicates that extreme price changes normally occur.

In order to quantify the heteroskedasticity, Table 2 presents
statistical tests of hypothesis between the pair of series. Ljung–
Box–Pierce Q-test does not reject the presence of autocorrelation
in the series of returns. Additionally, Engle’s ARCH test suggests
the conditional correlation of residuals (heteroskedasticity or
ARCH effects).

Fig. 3a exhibits the first and third lags autocorrelation, depict-
ing the existence of effects that justify the adoption of an ARMA (p,
q) model. The autocorrelation of the squared returns shown on
Fig. 3b indicates heteroskedasticity, when the process variance has
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Fig. 6. Box–Behnken desirability DRSM.

Table 8
Portfolio comparison between before and after computer-aided desirability tuning method.

Min Max Max

Portfolio Dubai China Indon. Venez. Risk Return Entropy Optimal Result
Before 0.0771 0.3397 0.1798 0.4034 0.0333 0.0117 1.2019 0.55719
After 0.2211 0.2506 0.2412 0.2870 0.0325 0.0099 1.3073 0.99667

1 Available at: http://www.eia.gov/dnav/pet/pet_pri_wco_k_w.htm.
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some correlation and conditional structure, also denoting the
necessity of use of GARCH model. Since the series’ behavior is
heteroskedastic, in the next step, the one-step-ahead values of
return and risk will be predicted using an ARMA–GARCH model.

4.2. Forecast μ̂ and σ̂2 by ARMA–GARCH model

The ARMA–GARCH parameters for each asset are presented on
Table 3. At this point, adopting the appropriate ARMA–GARCH
model for each market, it is possible to forecast values of mean and
standard deviation for each asset with one-step-ahead for σ̂2t and
ŷi;t , as presented on Table 4. These values will be used to compose
the portfolio’s risk and return with constant conditional correla-
tion calculated with the predicted one-step-ahead variance terms,
as suggested by Eq. (17).

4.3. Create a MDE for selected assets

For the completion of the research objective, it was adopted an
Extreme Vertices Mixture Design for 4 assets and a third order
polynomial degree. The proportions of each asset in the mixture
design were defined in a constrained range from a minimum of 5%
to a maximum of 85%. Using the one-step-ahead forecast for σ̂2t
and ŷi;t for each asset, it was built the design for risk, return and
entropy whose values were obtained using Eqs. (23)–(25), respec-
tively, as shown in Table 5.

Using Eq. (29), response surfaces were built for each portfolio
property using the OLS algorithm, leading to the follow objective
functions:

f 1 σ2t
� �	 


Portf olio ¼ 0:0326p1þ0:0356p2þ0:0370p3
þ0:0375p4�0:01185p1p2
�0:01303p1p3�0:00623p1p4�0:001643p2p3
�0:01295p2p4�0:0134p3p4 ð37Þ

f 2 E xð Þ½ �	 

Portf olio ¼ �0:0034p1�0:0012p2þ0:0001p3�0;0041p4

ð38Þ

f 3 S xð Þ½ �	 

Portf olio ¼ 0:1123p1þ0:1123p2þ0:1123p3

þ0:1123p4þ3:4016p1p2

þ3:4016p1p3þ3:4016p1p4þ3:4016p2p3
þ3:4016p2p4þ3:4016p3p4 ð39Þ

As could be seen, the application of MDE considers several
scenarios and predicts how each asset improves the investor gain.
Fig. 4 presents a mixture models for (a) risk, (b) return and
(c) entropy of the portfolio showing the influence of proportions
in variation of portfolio’s performance.

The desirability algorithm can be applied to optimize this
portfolio. Since the multiple objective functions are established,
it is necessary to define values for Hi, Ti and Li for desirability
running. In this case, when the objective is to maximize or
minimize the response, it was adopted the mean value of the
responses from each asset for upper or lower bounds. To obtain Ti
values, an individual optimization, Min

xAΩ
f i xð Þ, was conducted using

the Generalized Reduced Gradient (GRG) algorithm available at
Solver of Excels. The components used at GRG were obtained after
analyzing statistically the mixture models and searching for the
higher R2 (adj.) for each response. In the first run, it was chosen a
value equal to 1 for both ωi and λi, which indicates the absence of a
decision criteria. Table 6 presents bound, target, weight and
importance parameters applied to desirability algorithm before
the tuning procedure. For this scenario, global desirability was
55.72% and the optimal asset proportions were 7.71% (Dubai),
33.97% (China), 17.98% (Indonesia) and 40.34% (Venezuela).

4.4. Create a RSM for risk, return and entropy’s weight and
importance

As noted in Table 6, the first desirability trial was not well-
succeed suggesting that the computer-aided desirability tuning
may be employed. Practitioners are usually more comfortable
defining bounds and targets parameters since they are part of
their daily work [25]. These parameters were not included into the
tuning procedure so that they were held constant, according to
previous step 4.3. Notwithstanding weight and importance para-
meters must also be set, this decision-making process is not a
trivial task. Thus, the objective of this step is to generate the best
values for ωi and λi to be used in the last MDE. A Box–Behnken was
adopted as an experimental design considering 6 factors, being ωi

and λi for each component of risk, return and entropy, with further
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6 center points. This response surface design generated the 54
runs described in Table 7. The values of ωi and λi were chosen in
the range from 0.1 to 10 and from 1 to 10, respectively. The control
variables were set as follows: ω1 represents the desirability’s
weight for portfolio risk; λ1 is the desirability’s importance for
portfolio risk; ω2 is the desirability’s weight portfolio return; λ2 is
the desirability’s importance for portfolio return; ω3 is the desir-
ability’s weight for entropy and; λ3 is the desirability’s importance
for portfolio entropy.

4.5. Run DMDE based on RSM’s ωi and λi registering responses on RSM
arrange

According to 54 runs in Table 7, ωi and λi were used to set the
desirability algorithm DMDE in Eqs. (30)–(33). The results for global
desirability DMDE, risk, return, entropy and asset proportions were
also stored in Table 7. After testing several linear and nonlinear
models, the full quadratic model for global desirability DMDE, in Eq.
(40), has presented the best fit (adjusted R2¼88.5%) by using Eq.
(34). As can be seen in Fig. 5, the behavior of global desirability
DMDE depends on the quadratic and interaction effects among the
individual desirability parameters.

D̂MDE xð Þ ¼ 0:8254�0:0772ω1�0:0224λ1
�0:0736ω2�0:0387λ2�0:0161ω3þ0:0217λ3þ
þ0:0496ω2

1þ0:0309λ21þ0:0412ω2
2þ0:0251λ22

þ0:0260ω2
3þ0:0009λ23þ

�0:0023ω1λ1�0:0765ω1ω2�0:0415ω1λ2
�0:0077ω1ω3þ0:0174ω1λ3�0:0322λ1ω2þ
�0:0367λ1λ2�0:0069λ1ω3�0:0077λ1λ3
�0:0189ω2λ2�0:0069ω2ω3þ
þ :0140ω2λ3�0:0157λ2ω3þ0:0052λ2λ3þ0:0088ω3λ3

ð40Þ

4.6. Run DRSM to find the best ωi and λi for portfolio optimization

Since the response surface for global desirability function
(DMDE) is established, a nonlinear optimization routine should be
used to maximize this response. Considering the desirability
function based on the response surface design, Eqs. (35) and
(36), the values for Hi, Li and Ti are obtained in the same way of
the step 4.3. In this optimization routine there is only one
response to be maximized, the global desirability DMDE. Fig. 6
shows the best ωi and λi parameters to optimize the DMDE and,
then, to find the optimal portfolio.

4.7. In MDE, run the final desirability (DMDE) to find the optimal
portfolio

In order to obtain an optimal portfolio, the last routine was
processed by using Hi, Li and Ti from step 4.3, and ωi and λi from
step 4.6. Table 8 presents the comparison results before and after
computer-aided desirability tuning with an improvement of
78.87%. The optimal portfolio obtained in this condition was
distributed as 22.11% (Dubai), 25.06% (China), 24.12% (Indonesia)
and 28.70% (Venezuela). The balanced distribution of assets was
possible after the inclusion of the Shannon’s entropy. Fig. 7
illustrates the mixture contour plot for returns of weekly world
crude oil spot prices portfolio.

5. Conclusions

This paper has presented a computer-aided desirability tuning
method for multiobjective portfolio optimization. First, weekly
world crude oil spot prices were adjusted to an ARMA–GARCH

model in order to obtain the expected portfolio risk and return.
Second, mixture design was adopted to investigate and model risk,
return and entropy in relation to the asset proportions. Third, the
mixture models were optimized using desirability functions.
Eventually, response surface design has been applied to model
global desirability function (DMDE) and to set optimal parameters
for portfolio selection.

The proposed method was able to reduce subjectivity and
margin of errors from decision makers. Comparing computer-
aided method’s performance to the results with no decision maker
preference, the global desirability was substantially enhanced
(about 79%). Similarly, 99.68% of global desirability has insured
investor’s interest by mitigating risk and raising diversity of the
portfolio. It is also essential to emphasize that the interactions
among desirability parameters have greatly influenced the algo-
rithm performance. As could be seen in Figs. 6, ω1 and ω2 were the
most significant parameters for the global desirability perfor-
mance, mainly due to tighter bounds assigned to the responses
risk and return.

Further works could add bounds and targets for each response
as factors into the designed experiments in order to quantify their
relationship with weight and importance parameters. Although
the numerical results are related to a specific crude oil portfolio,
the computer-aided desirability tuning procedure can be properly
extended to other portfolio selection with the aim of obtaining not
only an adequate return but also low level of risk. Another further
contribution would implement the general idea of this tuning
procedure for different multiobjective optimization methods
based on decision maker’s preference such as: utility function,
global criterion, goal attainment, normal boundary intersection,
and others. In addition, other objective functions could be
included in the optimization algorithm such as liquidity, portfolio
cost and skewness.
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